
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7293

Infinispan as Key / Value data store

Sarith Divakar M
1
, Ashina Tholiyil

2

Lecturer, Computer Engineering, College of Applied Science, Kozhikode, India 1

Lecturer, Computer Science, College of Applied Science, Kozhikode, India 2

Abstract: Biggest challenges long-faced by todays applications are unit growth of knowledge. Quantity of knowledge

created and consumed is growing in size. It will increase further when complexity of application increases. Centralized

solutions for storing and retrieving data aren't possible for several reasons. First reason is that the inability to scale as

and once required. Single purpose of failure hinders handiness of the applications and therefore reducing potency.
Owing to these shortcomings of centralized systems we move towards data grids. Data grids act as a middleware which

will store massive set of data across distributed applications. Data grids distribute large sets of data across a group of

servers over a network, therefore forming a cluster. Middleware ought to be ready to serve numerous platforms and

storage systems. Data grids have to be compelled to be optimized to scale go in environments that manufacture and use

large amounts of data. Infinispan is that the resolution that has of these options.

Keywords: Infinispan, data grid, data structure, NoSQL

I. INTRODUCTION

Infinispan is a key/value NoSQL data store. It is written in

Java. Infinispan data store can run in distributed mode,

thus providing extreme scalability and high availability.

Infinispan project aims to provide a data structure that is

highly concurrent that make the most of modern multi-

processor/multi-core architectures. At the same time it

provides distributed cache capabilities. It exposes a JSR-

107 compatible Cache interface (which successively

extends java.util.Map) within which you will be able to

store objects. Infinispan can run in native mode, its real

price is in distributed mode wherever caches cluster along
and expose an oversized memory heap. Distributed mode

is a lot of powerful than straightforward replication since

every information entry is displayed solely to a set range

of replicas therefore providing resilience to server failures

also as measurability since the work done to store every

entry is constant in relevancy to a cluster size.

Infinispan provides huge heap and high handiness - If

you've got one hundred blade servers, and every node has

2GB of house to dedicate to a replicated cache, you finish

up with two GB of total information. Each server is simply
a duplicate. On the opposite hand, with a distributed grid

you wish one copy per information item - you get a one

hundred GB memory backed virtual heap that's

expeditiously accessible from anyplace within the grid. If

a server fails, the grid merely creates new copies of the

lost information, and puts them on alternative servers.

Applications longing for final performance aren't any

longer forced to delegate the bulk of their information

lookups to an outsized single information server - the

bottleneck that exists in over 80% of enterprise

applications.

Infinispan offers extreme scalability options. Since data is

equally distributed there's basically no major limit to the

scale of the grid, except cluster communication on the

network that is minimized to merely discovery of latest

nodes. All data access patterns use peer-to-peer

communication wherever nodes directly speak to every

different, that scale alright. Infinispan doesn't need entire

infrastructure closedown to permit scaling up or down.

Merely add/remove machines to your cluster while not

acquisition any down-time.

Data distribution is handled well in Infinispan data grids.

Infinispan uses consistent hash algorithmic rule to see

wherever keys ought to be situated within the cluster.

Consistent hashing permits for reasonable, quick and in

particular, settled location of keys with no want for more
data or network track. The goal of data distribution is to

keep up enough copies of state within the cluster thus it

may be sturdy and fault tolerant, however not too several

copies to forestall Infinispan from being ascendable.

Infinispan exposes a cache store interface, and several

other superior implementations, together with JDBC cache

stores, Amazon S3 cache stores, le system based cache

stores, etc. Infinispan offers support for the favoured

memcached protocol - with existing clients for nearly each

popular language - in addition as associate optimized.
Infinispan -specific protocol referred to as HotRod. This

suggests that Infinispan isn't simply helpful to Java. Any

major web site or application that wishes to require

advantage of a quick information grid is going to be ready

to do therefore.

II. INTERACTING WITH INFINISPAN

Infinispan is an open source data grid platform. Data grids

are unremarkably used as low-latency, highly-available

and elastic knowledge storage backend, usually as NoSQL

solutions. Data grids are usually employed in addition to

traditional databases, as a distributed cache for quick data

access. There are two ways that during which you will be

able to interact with Infinispan. One is in embedded mode,

wherever you start Infinispan in stance inside your JVM.

The opposite is client/server mode, wherever you start a

remote Infinispan instance and hook up with it employing

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7294

a client connector. Your selection on that mode of

interaction to use can depend upon variety of things,

together with whether or not you are using Infinispan as a

clustering toolkit to cluster your own framework, whether
or not you propose to use Infinispan to cache database

lookups, or whether or not you propose to interact with

Infinispan from a non-JVM environment.

III. INFINISPAN CONFIGURATIONS

We will configure data grid in each full and partial

replication of data, in each synchronous and asynchronous

manner. In a fully replicated mode, all nodes in a cluster

hold copies of all entries (if an entry exists on one node, it

will also exist on all other nodes).

Figure 2.1: Cache running on top of JVM

Figure 2.1, shows Infinispan caches running on top of Java

Virtual Machine (JVM). Data is inserted to cache running

on top of JVM A and Figure 2.2 shows replication of data

corresponding to keyword to all other caches.

Figure 2.2: Full replication mode

In a part replicated mode, a fixed number of copies are

maintained to supply redundancy and fault tolerance, no

matter cluster size. Figure 2.3 shows replication of

knowledge to JVM A and JVM B. This can be usually so

much fewer than the amount of nodes within the cluster. A

partially replicated knowledge grid provides a so much

bigger degree of scalability than a completely replicated

one. It's so the recommended clustering mode in
Infinispan. Invalidation is a clustered mode that doesn't

truly share any knowledge in the slightest degree, however

merely aims to get rid of data which will be stale from

remote caches.

Figure 2.3: Partial replication mode

IV. INFINISPAN MODES

Traditionally, clients have interacted with Infinispan in an

exceedingly peer-to-peer (P2P) fashion where Infinispan

and therefore the client code that accessed it lived within

same VM. Once Infinispan is queried during this method,
it’s thought of to be accessed in an embedded fashion, as

shown in the figure 2.4.

Figure 2.4: Peer to peer access

However, there are situations when accessing Infinispan

during a client-server mode may build a lot of sense than

accessing it via P2P. For example, attempting to access

Infinispan from non-JVM surroundings. Since Infinispan

is written in Java, if somebody had a C++ application that

needed to access it, it could not access in a P2P manner.

On the opposite hand, client-server would be absolutely

suited here assumptive that a language neutral protocol

was used and also the corresponding client and server

implementations were obtainable. Figure 2.5 shows client-
server mode

Figure 2.5: Client-server mode

Infinispan users wish to own associate elastic application

tier wherever you start/stop business process servers
terribly frequently. Now, if users deployed Infinispan

organized with distribution or state transfer, start-up time

may well be greatly influenced by the shuffling around of

information that happens in these things. Thus within the

figure 2.6, assuming Infinispan was deployed in P2P

mode, the app within the second server couldn't access

Infinispan till state transfer had completed.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7295

Figure 2.7: Elastic issue with P2P

This effectively implies that remarking new application-

tier servers is compact by things like state transfer as a

result of applications cannot access Infinispan till these

processes have finished and if the state being shifted

around is giant, this might take your time. This is often
undesirable in associate degree elastic surroundings

wherever you would like fast application-tier server

turnaround and predictable start-up times. Issues like this

will be resolved by accessing Infinispan during a client-

server mode as a result of beginning a brand new

application-tier server is simply a matter of beginning a

light-weight client that may connect with the backing data

grid server. No need for rehashing or state transfer to

occur and as a result server start-up times may be

additional predictable that is extremely necessary for

contemporary cloud-based deployments wherever physical
property in your application tier is vital. Figure 2.7 shows

achieving elasticity through client server mode.

Figure 2.7: Achieving elasticity

Other times, it's normal to seek out multiple applications

needing access to data storage. In these cases, you may in
theory deploy an Infinispan instance per each of these

applications however this might be wasteful and

troublesome to keep up. In case of databases you do not

deploy a database in your applications. So, instead you

may deploy Infinispan in client-server mode keeping a

pool of Infinispan data grid nodes acting as a shared

storage tier for your applications as shown in figure 2.8.

Figure 2.8: Shared data storage

Deploying Infinispan this manner conjointly permits you

to manage every tier independently, for instance, you'll

upgrade you application or app server without bringing

down your Infinispan knowledge grid nodes. Client-server

Infinispan still has disadvantages over P2P. Firstly, P2P

deployments are easier than client-server ones as a result

of in P2P, all peers are equals to every alternative and thus

this simplifies deployment. Client-server Infinispan
requests are probably to require longer compared to P2P

requests, attributable to the serialization and network cost

in remote calls. So, this is often a crucial issue to require

in account once planning application. As an example, with

replicated Infinispan caches, it would be higher to own

light-weight communications protocol clients connecting

to a server side application that accesses Infinispan in P2P

mode, instead of having a lot of heavyweight client side

apps talking to Infinispan in client-server mode, notably if

data size handled is very massive. With distributed caches,

the distinction may not be therefore huge as a result of
even in P2P deployments, you are not sure to have all data

accessible locally. Environments wherever application

tier elasticity isn't therefore necessary, or wherever server

side applications access state-transfer-disabled, replicated

Infinispan cache instances are amongst eventualities

wherever Infinispan P2P deployments are often additional

suited than client-server ones. All Infinispan server

modules are supported identical pattern wherever the

server backend creates an embedded Infinispan instance

and if you begin multiple backend, they will form a cluster

and share/distribute state if configured to do so. The server

varieties primarily differ within the sort of listener end
point accustomed handle incoming connections.

V. CONCLUSION

Infinispan is a data grid platform with the potential to

scale to thousands of node. Data in memory is portioned

across multiple servers dynamically therefore allows

continuous data availability and transactional integrity isn't
laid low with server failures.

ACKNOWLEDGMENT

I would like to offer my deepest gratitude to everybody

who helped me directly and indirectly for the successful

completion of my work. I thank God almighty for all the

blessings received during this endeavour. Last, but not the

least, I thank all my friends and my family for the support

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7296

and encouragement they have given me during the course

of my work.

REFERENCES

[1] Rosa, L.; Rodrigues, L.; Lopes, A., \Goal-oriented Self-

management of In-memory Distributed Data Grid Platforms",

Cloud Computing Technology and Science (CloudCom), 2011

IEEE Third International Conference on , vol., no.,

pp.587,591,Nov. 29 2011-Dec. 1 2011

[2] Jing Han, Meina Song, and Junde Song. "A Novel Solution of

Distributed Memory NoSQL Database for Cloud Computing", In

ICIS 2011, 10th IEEE/ACIS International Conference on Computer

and Information Science, 20 I I.

[3] http://www.redhat.com/products/jbossenterprisemiddleware/data-

grid

[4] Kai Fan, "Suvey on Nosql", Programmer, 2010(6): pp.76-78

[5] http://www.jboss.org/infnispan/

[6] http://nosql-database.org/

[7] http://infinispan.blogspot.in/2011/02/jsr-107-and-jsr-on-data-grids

[8] https://docs.jboss.org/author/display/ISPN/Cache+Loaders+and+St

ores

[9] http://www.jboss.org/rhq

[10] https://www.jboss.org/jbossas

BIOGRAPHIES

Sarith Divakar M received his Bachelor’s

degree in Information Technology in 2009
from Cochin University of Science and

Technology, Cochin. In 2014, he earned

Master’s degree in Computer Science with

specialization in Information Systems from

Rajagiri School of Engineering and Technology, Cochin.

Currently working as a faculty member at the Department

of Computer Science, College of Applied Science,

Kozhikode. His research interests include areas like Web

services, Data structures, Database systems, NoSQL,

Mobile technology. He published various papers in

international journals.

Ashina Tholiyil received her Bachelor’s

degree in Computer Science in 2008 from

EMEA College, Malappuram. In 2011, she

earned Master’s degree in Computer

Applications from AWH Engineering

College, Kozhikode. Currently working as a

faculty member at the Department of Computer Science,

College of Applied Science, Kozhikode. Her research

interests include areas like Data and System Security,

Software Engineering, Software Project Management,

Ecommerce systems.

